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Methodology 

The starting point for this simulation is the distribution of the virus at as 31 March 2020. In fact data 

on the spatial distribution across English districts is published on the UK Government website 

https://www.gov.uk/government/publications/covid-19-track-coronavirus-cases. There is a 

breakdown by 149 Upper Tier Local Authorities (UTLAs) but the accuracy of these data is highly 

suspect. Additionally, the geography of the breakdown only partially coincides with the geography 

and mapping tools I have to  hand,  the problem being to convert the numbers in the UTLA 

breakdown to my own Unitary Authority and Local Authority Districts (UALADs, old definition) 

numbering 408 and covering the whole of Great Britain.  Time is of the essence, and although 

conversion from one geography to another and filling in the missing data for Scotland and Wales is 

certainly doable, but it would be a tedious, boring and time consuming exercise based on dubious 

numbers. Rather, the approach adopted is to regress the Government numbers for some districts on 

their population size and population density, and this use the estimated coefficients to obtain 

predicted numbers of cases for districts for which I don’t have data.  The outcome is then scaled to 

equal the published UK Government total confirmed cases at the start date, summing across all 

areas this is 25,100 as at 31 March 2020. 

Starting from these initial cases as at 31 March, which I call week 1, week by week numbers of cases 

across  all 408 UALADs of GB are obtained using the following formulation, which is based on Baltagi 

et al(2014,2019). 

 1 1 1 2 1ln ln ln ln ln lnt t N t t t N t tc k c c p d c     − −= + + + + + +W W  (1) 

 In equation (1),  tc  is the number of cases across N =  408 districts at time t  ,  1,...,10t =  weeks. 

k  is a constant, p  is the population total in each UALAD  d  is the population density of each 

UALAD, which are assumed to be constant  over the 10 week period of simulation. Note the suffixes 

allow lagged effects, so that the number of cases in a district depends on the number in the previous 

week, but it also depends on contemporaneous effects coming from nearby districts, as governed by 

NW , reflecting infectivity across space, with proximate districts having related numbers of cases. 

The number of cases in a district at time t also depends on the number in nearby districts in the 

previous week, reflecting infectivity across time and space. Of major importance is each district’s 

population size and density.  A high population total will naturally lead to a higher number infected, 

but density of population is also assumed to be equally important. People living in close proximity in 

a dense location will be less able to socially isolate and the probability of coming into contact with an 

infected person will be higher.   

https://www.gov.uk/government/publications/covid-19-track-coronavirus-cases


NW  is a (standardised) N  by N connectivity matrix with zeros on the main diagonal. Districts are 

considered to be connected if they share a district boundary, that is they are contiguous. This gives 

an N  by N  matrix of 1s and 0s where 1 denotes contiguity and 0 otherwise. This is then row 

standardised by dividing each cell of the matrix by its row total, giving NW in which rows sum to 1. 

So lnN tcW  is an N by 1 vector with cell  ( 1,..., )i i N=  equal to the weighted average, with equal 

weights, of tc in districts that are contiguous to district i . 

Other (unobservable) factors are captured by t  which is a vector of random effects picking up time-

invariant heterogeneity across districts (the net effect of many social and economic factors), 

denoted by , 1,...,i i N =  . In addition, it picks up idiosyncratic time and country varying shocks, 

denoted by it  . 

Also as is utilised in recent literature (Baltagi et al, 2019), we assume a spatial moving average 

process causing error dependence across districts, thus   
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The aim is to use the model to simulate realistic and plausible outcomes across districts and over 

time. Normally one would estimate the parameters 2

1 2, , , , ,        and 2

  but in this case we 

simply assume values that hopefully make sense and correspond to what seems evident from data 

and other modelling exercises relating to coronavirus. Accordingly, we assume 

1 2 1 22, 0.5, 0.2, 0.1, 0.15, 0.15, 0.25k      = = = = − = = = −  .    The behavioural assumption 

behind these parameters are very simple, they are chosen to ensure that the number infected is a 

function of spatial and temporal proximity. It will be a large number if the number in the district is 

large in the previous week, or if a large number of cases occurs in a nearby district, either in the 

same or in the previous week. Likewise, it will be large in large, dense centres of population.  

In the interests of a happy outcome, these parameter assumptions are commensurate with a 

dynamically stable, stationary process. This means that in the long run the number of cases in each 

district tends to its own equilibrium level consonant with its population, population density and 

proximity to other districts. The literature cited gives the precise rules governing whether or not the 

dynamics reduce to a steady state over time. Of course the assumed parameter values are open to 

question, and different analysts might want to give more or less weight to different elements. For 

example, should 1  be larger to reflect a stronger impact of the number of cases in neighbouring 

districts? The negative value of   may seem to be at variance with the assumed positive proximity 

effect, but what we are trying to obtain is an overall net positive effect of proximity which, 

importantly, leads to an equilibrium outcome rather than runaway transmission. Baltagi et al(2019) 

and Fingleton and Szumilo(2019) give the logical basis for a negative  parameter consistent with 

positive spatial dependence. I have avoided choosing parameters leading to exponential growth in 

the number of cases with no long run equilibrium. The model is therefore trying to produce an 

outcome that is in line with what the UK Government wants, and expects if UK citizens adhere 

strongly to the policy of social distancing.  



The equilibrium outcome at time T , where T is a large number and for this rapidly evolving process 

is as short as 10 weeks, is given by   

 ( ) ( )
1

1 2ln T N N Nc p d  
−

= − + +B C G  (3) 

 In this, ( )1N N N= −B I W  , ( )N N N = +C I W  and ( )2N N N= −G I W  , p  is the population 

and d  is the population density at time T which is assumed to remain constant for each district 

over time, and    is an N by 1 vector of time-invariant heterogeneity across districts. To generate 

 we make the heroic assumption that they occur at random across districts by drawing at random 

from an N( 0, 0.01) distribution. In practice, the evolution towards equilibrium is given by the 

recursive iteration through to time T of  

 ( )1

1 1 2ln ln , 2,...,t N N t Nc k c p d t T  −

−= + + + + =B C G  (4) 

Where the process commences with 1ln , 1,...408ic i =  is the assumed distribution of cases across 

408 GB districts at  31 March 2020 as described above. This gives exactly the outcome at time T as 

equation (3).  The reason for the iteration is that we wish to depict the dynamic evolution of the 

number of cases and the share of population infected through time until steady state has been 

reached.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Outcomes 

Figure 1 shows that the number of cases peaks at around week 6, but as Figure 2 shows we should 

see a steady decline in the number of new cases each week as the lockdown takes effect. Figure 3 is 

the geography of cases in week 1  (31/3/2020 ,of course the numbers are subject to error!).  The 

broad pattern is that places with large populations and high population densities have the highest 

incidence, of course reflecting the fact that the starting point for the simulation is in many districts 

based on their population and population density. The upper limit of about 3000 cases occurs in the 

highly urbanized districts (London, Midlands, Central belt of Scotland etc). Roughly half of districts 

have 1000 cases or less. Figure 5 focuses on the London Boroughs, which have seen the greatest 

intensity. Most Boroughs end up with between 10,000 and 15,000 cases by week 6. Figure 6 gives 

the geography of the log number of cases in week 1, with an intense concentration in Inner London, 

plus some more peripheral urban hotspots in the Greater South East. Figure 8 gives the official 

published cases by region in week 2 (as at 5/4/2020) which can be compared with the simulated 

number from week 2. The geography is similar, but the aggregate number adding across all 408 

districts of Figure 9 is 1,498,200 which is very much larger than the official count summing over the 

Figure 8 regions, which is 47,800. Note however the caveat issued with the official total, which says 

that ‘the actual number of people with the respiratory infection in the UK is estimated to be much 

higher though - as only those in hospital and some NHS staff are currently tested’. At the time of 

writing I have no reason to believe the number is not about 1.5 million. Figure 11 shifts attention to 

week 5, predicted to be towards the end of the epidemic (we hope!). The focus on the urbanized 

districts remains the same, but Figure 12 shows that the number of cases has greatly increased 

(paralleling the shift from week 1 to week 5 in Figure 1). Figure 13 quantifies the increase by district, 

showing that urban districts are expected to see 5 or 6 times the week 1 cases, compared with more 

peripheral and rural areas where the ratio is more like 4. Figure 15 gives the same for London and 

the South East, showing a distinction between urban and rural districts.  

 In Figure 17 attention switches to the share of the population infected. In week 1 the assumption is 

that few districts have above 2% of the population infected. By week 5 most remain at about 3% but 

some districts approach or exceed 8-10%. Figure 18 gives the geography of log infection rate in week 

1. Evidently the hotspots for infection are not just highly urbanized areas, but a bit more 

widespread. Figure 19 indicates that about half of all districts have infection shares of 1% or less. 

Figures 20 and 21 gives a similar, persistent, geography but higher infection shares for week 5. 

Figure 22 shows the geography of the change in infection shares from weeks 1 to 5. The emphasis 

here is that the highest % change is in and around urbanized areas. Figure 23 indicates this is up to 6-

8%, compared with roughly 3% for more rural districts. Figure 24 compared infection shares in 

London and Edinburgh. In London, they reach 5%, but it is less than half that for Edinburgh.  

 

 

 

 

 

 



 

 

 

 

 

 

Figure 1 : Cases week 1   

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2 : Change in number of cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3 : log cases week 1 

 

 

Figure 4 : Frequency distribution log cases week 1 

 

 

 



Figure 5 : London Boroughs cases week 1   

 

 

 

Figure 6 : London and the South East  log cases week 1   

 

 



Figure 7 : Frequency distribution log cases London and the South East  week 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 8 : Confirmed cases week 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 9 : simulated cases week 2 

 

Figure 10 : Frequency distribution of number of cases week 2 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 : log cases week 5 

 



Figure 12 : Frequency distribution log cases week 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 13 : ratio of cases week 5 to week 1 

 

 

Figure 14 : frequency distribution of ratios week 5 to week 1 

 

 

 



Figure 15 : ratio of cases London and the South East week 5  to week 1 

 

 

Figure 16 : Frequency distribution ratio of cases London and the South East  week 5 to week 1 

 

 

 



Figure 17 : Infection share by week 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 18 : Log infection share week 1 

 

Figure 19 : Frequency distribution Log infection share week 1 

 

 

 

 



Figure 20 : Log infection share week 5 

 

Figure 21 : Frequency distribution Log infection share week 5 

 

 

 

 



Figure 22 : Change in infection share weeks 1 to 5 

 

Figure 23 : Frequency distribution of change in infection share 

 

 

 

 



 

 

 

 

 

 

Figure 24 : infection shares in two cities 
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